Credal Sum-Product Networks
نویسندگان
چکیده
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification. Hence, their results are prone to be unreliable and overconfident. In this work, we develop credal sum-product networks, an imprecise extension of sum-product networks. We present algorithms and complexity results for common inference tasks. We apply our algorithms on realistic classification task using images of digits and show that credal sum-product networks obtained by a perturbation of the parameters of learned sum-product networks are able to distinguish between reliable and unreliable classifications with high accuracy.
منابع مشابه
Modeling Unreliable Observations in Bayesian Networks by Credal Networks
Bayesian networks are probabilistic graphical models widely employed in AI for the implementation of knowledge-based systems. Standard inference algorithms can update the beliefs about a variable of interest in the network after the observation of some other variables. This is usually achieved under the assumption that the observations could reveal the actual states of the variables in a fully ...
متن کاملCredal Compositional Models and Credal Networks
This paper studies the composition operator for credal sets introduced at the last ISIPTA conference in more detail. Our main attention is devoted to the relationship between a special type of compositional model, so-called perfect sequences of credal sets, and those of (precise) probability distributions, with the goal of finding the relationship between credal compositional models and credal ...
متن کاملCredal Sets Approximation by Lower Probabilities: Application to Credal Networks
Credal sets are closed convex sets of probability mass functions. The lower probabilities specified by a credal set for each element of the power set can be used as constraints defining a second credal set. This simple procedure produces an outer approximation, with a bounded number of extreme points, for general credal sets. The approximation is optimal in the sense that no other lower probabi...
متن کاملEGL2U: Tractable Inference on Large Scale Credal Networks
Credal networks [1, 2] generalize Bayesian networks [3] by associating with variables (closed convex) sets of conditional probability mass functions, i.e., credal sets1, in place of precise conditional probability distributions. Credal networks are models of imprecise probabilities [4], which allow the capturing of incompleteness and imprecision of human knowledge and beliefs [1]. Credal networ...
متن کاملSet-Based Variational Methods in Credal Networks: the SV2U Algorithm
Abstract. Graphical models that represent uncertainty through sets of probability measures are often referred to as credal networks. Polynomial-time exact inference methods are available only for polytree-structured binary credal networks. In this work, we approximate potentially intractable inferences in multiconnected binary networks by tractable inferences in polytree-structures. We propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017